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Abstract
A portfolio optimization problem with fuzzy random variables is discussed using coherent risk measures, which are

characterized by weighted average value-at-risks with risk spectra. By perception-based approach, coherent risk measures

and weighted average value-at-risks are extended for fuzzy random variables. Coherent risk measures derived from risk

averse utility functions are introduced to discuss the portfolio optimization with randomness and fuzziness. The ran-

domness is estimated by probability, and the fuzziness is evaluated by lambda-mean functions and evaluation weights. By

mathematical programming approaches, a solution is derived for the risk-minimizing portfolio optimization problem.

Numerical examples are given to compare coherent risk measures. It is made clear that coherent risk measures derived

from risk averse utility functions have excellent properties as risk criteria for these optimization problems. Not only

pessimistic and necessity case but also optimistic and possibility case are calculated numerically to deal with uncertain

information.

Keywords Coherent risk measure � Fuzzy random variable � Perception-based extension � Weighted average value-at-risk �
Portfolio optimization

List of symbols
VaR;AVaR Value-at-risk and average value-at-

risk

AVaRm ð gAVaRmÞ (Extended) Weighted average value-

at-risk with m
q ð~qÞ (Extended) Coherent risk measure

m;C Risk spectrum and its component

function

N The set of all fuzzy numbers

~n; ~na ¼ ½~n�
a ; ~n

þ
a � Fuzzy number and its a-cut

~X; ~Xa ¼ ½ ~X�
a ; ~X

þ
a � Fuzzy random variable and its a-cut

X ð ~XÞ The family of all integrable real-

valued (fuzzy-valued) random

variables

E; ~E Expectation and perception-based

expectation

Ek Mean of fuzzy numbers

k Optimistic/pessimistic index

wðaÞ Possibility/necessity evaluation

weight

f Utility function

Si
t ð ~S

i

tÞ (Fuzzy-valued) Stock price for asset

i at time t

Ri
t ð ~R

i

tÞ (Fuzzy-valued) Rate of return for asset

i at time t

wt ¼ ðw1
t ; . . .;wn

t Þ Portfolio weight vector

W t The set of all portfolio weight vectors

lt ¼ ½li
t� Vector of expected rates of return

Rt ¼ ½rij
t � Variance–covariance matrix for rates

of return

c�t The optimal expected rate of return

q�t The optimal risk value

1 Introduction

In financial asset management, portfolio allocation is a

technique to achieve both minimization of asset risks and

maximization of expected returns. In classical mean-vari-

ance portfolio models, the variance is used as a risk mea-

sure [19]. Recently drastic declines of asset prices are

& Yuji Yoshida

yoshida@kitakyu-u.ac.jp

1 Faculty of Economics and Business Administration, The

University of Kitakyushu, 4-2-1 Kitagata, Kokuraminami,

Kitakyushu 802-8577, Japan

123

Neural Computing and Applications (2020) 32:10847–10857
https://doi.org/10.1007/s00521-018-3683-y(0123456789().,-volV)(0123456789().,-volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-018-3683-y&amp;domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-018-3683-y&amp;domain=pdf
https://doi.org/10.1007/s00521-018-3683-y


www.manaraa.com

studied, and value-at-risk is used widely to estimate the

risk of asset price declines in practical financial manage-

ment [12]. Value-at-risk is defined by percentiles at a

specified probability; however, it does not have coherency.

Coherent risk measures have been studied to improve the

criterion of risks with worst scenarios [4]. Several

improved risk measures based on value-at-risks are pro-

posed: for example, conditional value-at-risk, expected

shortfall and entropic value-at-risk [23, 29]. Kusuoka [16]

gave a spectral representation for coherent risk measures,

and Acerbi [1] and Adam et al. [2] discussed its applica-

tions to portfolio selection and so on. Emmer at al. [7]

compared risk measures by their properties to find best risk

measures. This paper deals with portfolio optimization

using weighted average value-at-risk representation of

coherent risk measures in fuzzy environment.

Portfolio optimization in fuzzy logic framework was

studied first from decision making with fuzzy goal, which

was introduced by Bellman and Zadeh [5], and it has been

developed with possibility measures and necessity mea-

sures by Tanaka and Guo [27], Tanaka et al. [28], Watada

[31], Katagiri at al. [13] and so on. These surveys can be

found in Fang et al. [8]. Using fuzzy random variables,

maximization of fuzzy variable returns is studied by

Hasuike et al. [11], Li and Xu [18], Sadati and Doniavi

[25], Sadati and Nematian [26] and so on. On the other

hand, Yoshida [35], Wang et al. [30] and Moussa et al. [20]

have studied risk values using value-at-risks for fuzzy

random variables as risk criteria, and further Yoshida [39]

has discussed portfolio optimization with coherent risk

measures in fuzzy environment.

During the financial crisis in September 2008 and the

China’s stock market crashing in May 2015, we have

experienced the serious distrust about the stock market

because of imprecise information among investors and the

market. Fuzzy logic is an important tool to represent this

kind of linguistic uncertainty [10, 14]. In this paper, to

represent uncertainty we use fuzzy random variables which

have two kinds of uncertainties, i.e., randomness and

fuzziness. Fuzzy random variables are applied to decision

making under uncertainty with fuzziness such as linguistic

information in engineering, economics et al. [17]. Risk

measures for real-valued random variables are extended for

fuzzy random variables by perception-based approach in

[33]. Yoshda [32] introduced the mean and the variance of

fuzzy random variables, using k-mean functions and eval-

uation weights. This paper estimates fuzzy random vari-

ables by probabilistic expectation and these criteria, which

are characterized by decision maker’s pessimistic–opti-

mistic indexes and possibility–necessity weights. These

parameters are decided by the investor with his certainty

about information in the stock market.

On February 5, 2018, the flash crash of the stock market

has occurred because of high-speed computers trading.

Nowadays institutional investors operate high-speed com-

puters based on neural computing and deep learning, and

the high-speed trading among computers causes the flash

crash. Decision makers usually select trading strategies

after measuring and observing the risk of assets in the

market. For quick and stable trading, we need to take risk

criterion based on investor’s utility into computational

decision making in asset management. Yoshida [38] has

dealt with portfolio optimization with coherent risk mea-

sures; however, it could not demonstrate how we select

proper coherent risk measures for utility functions.

Recently Yoshida [39] has studied the mathematical rela-

tion between decision maker’s risk averse utility functions

and coherent risk measures, and it has derived coherent risk

measures adapted to decision maker’s risk averse utility.

The derived coherent risk measure can inherit the risk

averse property of the decision maker’s utility function as

risk spectrum weighting. On the basis of mathematical

results in [39], this paper introduces coherent risk measures

derived from utility functions and we discuss risk-mini-

mizing portfolio optimization with fuzzy random variables.

We give numerical examples to compare coherent risk

measures, and we demonstrate this optimization method

which brings us reasonable and stable results taking over

decision maker’s risk averse utility.

The paper is organized as follows: In Sect. 2, we

introduce coherent risk measures and their spectral repre-

sentation. In Sect. 3, from [39] we introduce weighted

average value-at-risks as coherent risk measures derived

from decision maker’s utility functions. In Sect. 4, we give

fuzzy numbers and fuzzy random variables, and we define

extended estimations for fuzzy random variables by per-

ception-based approach. In Sect. 5, we introduce scalar-

ization tools with k-mean functions and evaluation weights

in order to evaluate the randomness and fuzziness for fuzzy

random variables. In Sect. 6, using coherent risk measures

and weighted average value-at-risks, we discuss portfolio

optimization under uncertainty in three steps: The first step

is mean-variance portfolio optimization, the second step is

risk-sensitive portfolio optimization, and in the last step,

we obtain a solution of portfolio optimization for risk

minimization. In Sect. 7, we investigate numerical exam-

ples for the obtained results and we compare coherent risk

measures in relation to utility functions from the numerical

results.
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2 Coherent risk measures

Let X be a sample space and let P be a non-atomic prob-

ability measure on X. Let X be a family of all integrable

real-valued random variables X on X for which there exists

a non-empty open interval I such that their cumulative

distribution functions FXð�Þ ¼ PðX\� Þ : I ! ð0; 1Þ are

continuous, strictly increasing and onto. Then, there exist

strictly increasing and continuous inverse functions F�1
X .

For a positive probability p, a value-at-risk is defined by

the following percentile of the distribution function:

VaRpðXÞ ¼ supfx 2 I j FXðxÞ� pg ¼ F�1
X ðpÞ ð1Þ

for p 2 ð0; 1Þ and VaR1ðXÞ ¼ sup I. Then, an average

value-at-risk is given by

AVaRpðXÞ ¼
1

p

Z p

0

VaRqðXÞ dq ð2Þ

for p 2 ð0; 1� and X 2 X . Let R ¼ ð�1;1Þ and

Rþ ¼ ½0;1Þ. The following definitions are introduced to

characterize risk measures.

Definition 1 Let a map q : X 7!R.

(i) Two random variables Xð2 XÞ and Yð2 XÞ are

called comonotonic if ðXðxÞ � Xðx0ÞÞðYðxÞ �
Yðx0ÞÞ � 0 for almost all x;x0 2 X.

(ii) q is called comonotonically additive if qðX þ
YÞ ¼ qðXÞ þ qðYÞ for all comonotonic random

variables X; Y 2 X .

(iii) q is called law invariant if qðXÞ ¼ qðYÞ for all

X; Y 2 X satisfying PðX\ � Þ ¼ PðY\ � Þ.
(iv) q is called continuous if limn!1 qðXnÞ ¼ qðXÞ for

fXng � X and X 2 X such that limn!1 Xn ¼ X

almost surely.

Definition 2 [4] A map q : X7!R is called a coherent risk

measure if it satisfies the following (i)–(iv):

(i) qðXÞ� qðYÞ for X; Y 2 X satisfying X � Y .

(monotonicity)

(ii) qðX þ cÞ ¼ qðXÞ � c for X 2 X and c 2 R.

(translation invariance)

(iii) qðc XÞ ¼ c qðXÞ for X 2 X and c 2 Rþ. (positive

homogeneity)

(iv) qðX þ YÞ� qðXÞ þ qðYÞ for X; Y 2 X . (sub-

additivity)

In [4, 37], it is known about value-at-risks (1) and

average value-at-risks (2) that �AVaRpð�Þ is a coherent

risk measure however �VaRpð�Þ is not coherent. For a

probability p 2 ð0; 1� and a function m on [0, 1], we define

an average value-at-risk with weighting m on (0, p) by

AVaRm
pðXÞ ¼

Z p

0

VaRqðXÞ mðqÞ dq =

Z p

0

mðqÞ dq: ð3Þ

Hence, (3) is called a weighted average value-at-risk and m
is called a risk spectrum if it is non-increasing. Then,

coherent risk measures have the following spectral repre-

sentation [16, 39].

Lemma 1 Let q : X 7!R be a law invariant, comono-

tonically additive, continuous coherent risk measure. Then,

there exists a risk spectrum m such that

qðXÞ ¼ �
Z 1

0

VaRqðXÞ mðqÞ dq ¼ �AVaRm
1ðXÞ ð4Þ

for X 2 X . Further, �AVaRm
p is a coherent risk measure on

X for p 2 ð0; 1Þ.

Because �AVaRm
p is a coherent risk measure in

Lemma 1, the following lemma holds from Definition 2.

Lemma 2 Let X; Y 2 X . Then, the following (i)–(iv) hold:

(i) If X � Y , then AVaRm
pðXÞ�AVaRm

pðYÞ.
(ii) AVaRm

pðX þ cÞ ¼ AVaRm
pðXÞ þ c for c 2 R.

(iii) AVaRm
pðc XÞ ¼ c AVaRm

pðXÞ for c 2 Rþ.

(iv) AVaRm
pðX þ YÞ�AVaRm

pðXÞ þ AVaRm
pðYÞ.

3 Coherent risk measures derived
from decision maker’s utility

Yoshida [39] has studied coherent risk measures adapted to

decision maker’s risk averse utility, using weighted average

value-at-risks. Let a risk averse exponential utility function

f ðxÞ ¼ 1 � e�sx

s
ð5Þ

for x 2 R with a positive constant s. On the basis of

mathematical results in [39], we introduce coherent risk

measures derived from risk averse utility functions f. Let a

probability p 2 ð0; 1�. Under decision maker’s utility

function f, the average value-at-risks of random variables

Xð2 XÞ over (0, p) are estimated as

f�1 1

p

Z p

0

f ðVaRqðXÞÞ dq

� �

: ð6Þ

In portfolio optimization, we use a coherent risk measure

�AVaRm
p given by (3) which is the nearest to the risk

estimation (6). Let m be a risk spectrum attaining the

minimum distance

min
m

X

X2X
f�1 1

p

Z p

0

f ðVaRqðXÞÞ dq

� �

� AVaRm
pðXÞ

� �2

ð7Þ
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for p 2 ð0; 1�. Then, the risk estimation (6) on the downside

range ð�1;VaRpðXÞÞ is related to negative utilities, and it

acquires decision maker’s risky sense regarding random

variable X, while the coherent risk measure�AVaRm
p is given

by AVaRm
p which has a kind of semi-linearity such as Lem-

ma 2(ii), (iii). In this paper, we deal with a case when value-

at-risks of random variables X 2 X are represented as

VaRpðXÞ ¼ lþ jðpÞ � r ð8Þ

with a mean l ¼ EðXÞ and a standard deviation r ¼ rðXÞ,
where j : ð0; 1Þ7!R is an increasing function. Then, we

have the following lemma from [39].

Lemma 3 Let m 2 N be a function given by

mðpÞ ¼ e
�
R 1

p
CðqÞ dq

CðpÞ ð9Þ

for p 2 ð0; 1� with its component function

CðpÞ ¼

X

X2XrðXÞ
f ðVaRpðXÞÞ � 1

p

R p

0
f ðVaRqðXÞÞ dq

pf 0 f�1 1
p

R p

0
f ðVaRqðXÞÞ dq

� �� �

X

X2XrðXÞ VaRpðXÞ � f�1 1
p

R p

0
f ðVaRqðXÞÞ dq

� �� � :

ð10Þ

If m is non-increasing, then m is an optimal risk premium for

(7).

Sketch proof Let p 2 ð0; 1Þ. From (8), for X 2 X , we put

VaRpðXÞ ¼ lþ jðpÞ � r with a mean l ¼ EðXÞ and a

standard deviation r ¼ rðXÞ. To discuss the minimization

(7), by (3) we define

GðmÞ ¼
X

X2X
f�1 1

p

Z p

0

f ðlþ jðqÞrÞ dq

� ��

�
R p

0
ðlþ jðqÞrÞ mðqÞ dq
R p

0
mðqÞ dq

!2 ð11Þ

for risk spectra m. Let m be a risk spectrum attaining the

minimum (7). Then, ð1 � tÞmþ te is also a risk spectrum

for t 2 ð0; 1Þ and risk spectra e. Hence, we have

lim
t#0

Gðð1 � tÞmþ teÞ � GðmÞ
t

¼ 0 ð12Þ

for any risk spectrum e. This follows

X

X2X
r f�1 1

p

Z p

0

f ðlþ jðqÞrÞ dq

� ��

�
R p

0
ðlþ jðqÞrÞ mðqÞ dq
R p

0
mðqÞ dq

!

¼ 0:

ð13Þ

Therefore, we obtain

X

X2X
r f�1 1

p

Z p

0

f ðlþ jðqÞrÞ dq

� ��

Z p

0

mðqÞ dq �
Z p

0

ðlþ jðqÞrÞ mðqÞ dq

�

¼ 0

ð14Þ

for all p 2 ð0; 1Þ. Differentiating (14) with respect to p, we

get

mðpÞ
R p

0
mðqÞ dq

¼ CðpÞ ð15Þ

for all p 2 ð0; 1Þ, where C is defined by (10). Thus, we

obtain (9) from (15). h

4 Fuzzy random variables and risk measures

A fuzzy number is represented by its membership function

~n : R ! ½0; 1� which is normal, upper semicontinuous,

fuzzy convex and has a compact support [40]. Let N be the

set of all fuzzy numbers. For a fuzzy number ~n 2 N , its a-

cuts are given by closed intervals ~na ¼ fx 2 R j
~nðxÞ� ag ¼ ½~n�

a ; ~n
þ
a � for a 2 ð0; 1�. Hence, the fuzzy max

order 	 is a partial order defined on N as follows: For

fuzzy numbers ~n; ~m 2 N ; ~n 	 ~m means that ~n

a � ~m


a for

all a 2 ð0; 1�. An addition and a scalar multiplication for

fuzzy numbers are defined as follows: For ~n; ~m 2 N and

c 2 R, the addition ~n þ ~m of ~n and ~m and the scalar mul-

tiplication c ~n of c and ~n are fuzzy numbers given by their

a-cuts ð~n þ ~mÞa ¼ ½~n�
a þ ~m�

a ; ~n
þ
a þ ~mþ

a � and ðc ~nÞa ¼
½c ~n�

a ; c ~nþ
a � if c� 0 and ðc ~nÞa ¼ ½c ~nþ

a ; c ~n�
a � if c\0, where

~na ¼ ½~n�
a ; ~n

þ
a � and ~ma ¼ ½ ~m�

a ; ~m
þ
a � (a 2 ½0; 1�). Now we also

use the following metric dH on N induced from Hausdorff

metric: dHð~n; ~mÞ ¼ supa2½0;1� maxfj~n�
a � ~m�

a j; j~nþ
a � ~mþ

a jg
for ~n; ~m 2 N . A fuzzy-number-valued map ~X : X ! N is

called a fuzzy random variable if ~X


a 2 X for all a 2 ð0; 1�,

where ~XaðxÞ ¼ fx 2 R j ~XðxÞðxÞ� ag ¼ ½ ~X�
a ðxÞ; ~X

þ
a ðxÞ�

for x 2 X. Then, a fuzzy random variable ~X is called

integrable if random variables ~X


a are integrable for all

a 2 ½0; 1�. Let ~X be the family of all integrable fuzzy

random variables on X. Kruse and Meyer [15] gave the

expectation of fuzzy random variables ~X 2 ~X in the fol-

lowing perception-based approach, which is based on

Zadeh’s extension principle, as follows:

~Eð ~XÞðxÞ ¼ sup
X2X :EðXÞ¼x

inf
x2X

~XðxÞðXðxÞÞ ð16Þ

for x 2 R, where EðXÞ ¼
R

XdP is the expectation for real-

valued random variables X 2 X . Then, the expectation

~Eð ~XÞ is a fuzzy number with a-cuts ~Eð ~XÞa ¼
½Eð ~X�

a Þ;Eð ~Xþ
a Þ�: Puri and Ralescu [22] also discussed the
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expectation (16) of fuzzy random variables by Aumann

integral. For a weighted average value-at-risk AVaRm
p in

Sect. 3, we introduce its extended version for a fuzzy

random variable ~X 2 ~X by a fuzzy number

gAVaRm
pð ~XÞðxÞ ¼ sup

X2X :AVaRm
pðXÞ¼x

inf
x2X

~XðxÞðXðxÞÞ ð17Þ

for x 2 R. Then, its a-cuts are

gAVaRm
pð ~XÞa ¼ ½AVaRm

pð ~X
�
a Þ;AVaRm

pð ~X
þ
a Þ�: ð18Þ

for a 2 ½0; 1�. Hence, we obtain the following lemma from

Lemma 2 and (18) in the same way as [34].

Lemma 4 Let ~X; ~Y 2 ~X . Then, the following (i)–(iv) hold:

(i) If ~X � ~Y , then gAVaRm
pð ~XÞ � gAVaRm

pð ~YÞ.
(ii) gAVaRm

pð ~X þ ~cÞ ¼ gAVaRm
pð ~XÞ þ ~c for ~c 2 N .

(iii) gAVaRm
pðc ~XÞ ¼ c gAVaRm

pð ~XÞ for c 2 Rþ.

(iv) gAVaRm
pð ~X þ ~YÞ 	 gAVaRm

pð ~XÞ þ gAVaRm
pð ~YÞ.

We can also extend value-at-risk VaRp and average

value-at-risk AVaRp in the same way [34]. For a coherent

risk measure q, its extended measure for a fuzzy random

variable ~X 2 ~X is a fuzzy number

~qð ~XÞðxÞ ¼ sup
X2X : qðXÞ¼x

inf
x2X

~XðxÞðXðxÞÞ ð19Þ

for x 2 R. Its a-cut is given by ~qð ~XÞa ¼ ½qð ~Xþ
a Þ; qð ~X

�
a Þ�,

and this extended measure ~qð�Þ has the following properties

from Definition 2 and [34].

Lemma 5 Let ~X; ~Y 2 ~X . Then, the following (i)–(iv) hold:

(i) If ~X � ~Y , then ~qð ~XÞ 	 ~qð ~YÞ.
(ii) ~qð ~X þ ~cÞ ¼ ~qð ~XÞ � ~c for ~c 2 N .

(iii) ~qðc ~XÞ ¼ c ~qð ~XÞ for c 2 Rþ.

(iv) ~qð ~X þ ~YÞ � ~qð ~XÞ þ ~qð ~YÞ.

5 Estimation of fuzziness with k-mean
functions and evaluation weights

Defuzzification has been studied by many researchers. In

this paper, the fuzziness of fuzzy numbers and fuzzy ran-

dom variables is estimated by k-mean functions

½x; y�7!k � x þ ð1 � kÞ � y ð20Þ

with k 2 ½0; 1� and evaluation weights wðaÞ for closed

intervals [x, y] [32, 33]. Hence, k is called the pessimistic

index if k ¼ 1, and it is called the optimistic index if k ¼ 0

[9]. A defuzzification of a fuzzy number ~n 2 N with k-

mean and weight wðaÞ is given by

Ekð~nÞ ¼
R 1

0
ðk � ~n�

a þ ð1 � kÞ � ~nþ
a ÞwðaÞ da

R 1

0
wðaÞ da

; ð21Þ

where a-cuts of ~n are closed intervals ~na ¼ ½~n�
a ; ~n

þ
a �. Here,

wðaÞ is called the possibility evaluation weight if wðaÞ ¼ 1

for a 2 ½0; 1�, and it is also called the necessity evaluation

weight if wðaÞ ¼ 1 � a for a 2 ½0; 1�. This approach is

corresponding to the idea in Drago and Ridella [6]. Then,

we have the following lemma from [32, Theorem 1].

Lemma 6 Let k 2 ½0; 1�. Ekð�Þ be monotonically increas-

ing, positively homogeneous and additive on N .

For a fuzzy random variable ~X 2 ~X , the expectation of

the mean EðEkð ~XÞÞ is a real number

EðEkð ~XÞÞ ¼ E

R 1

0
ðk � ~X

�
a þ ð1 � kÞ � ~X

þ
a ÞwðaÞ da

R 1

0
wðaÞ da

 !

:

ð22Þ

Hence, the following lemma holds from [32, Corollary 1].

Lemma 7 [32, 33] Let k 2 ½0; 1�. EðEkð�ÞÞ has the fol-

lowing properties (i)–(iii):

(i) EðEkð ~XÞÞ ¼ Ekð ~Eð ~XÞÞ for ~X 2 ~X .

(ii) EðEkð~nÞÞ ¼ Ekð~nÞ and EðEkðXÞÞ ¼ EðXÞ for ~n 2
N and X 2 X .

(iii) EðEkð�ÞÞ is monotonically increasing, positively

homogeneous and additive on ~X .

Let ~Xa be a family of fuzzy random variables ~X 2 ~X for

which there exist a random variable X 2 X and a fuzzy

number ~n 2 N such that

~XðxÞðxÞ ¼ 1fXðxÞgðxÞ þ ~nðxÞ ð23Þ

for x 2 X and x 2 R, where 1f�g denotes the characteristic

function of a singleton. Lemma 7(i) implies that the expec-

tation Eð�Þ and the mean Ekð�Þ are exchangeable. On the other

hand, we obtain the following exchangeabilities on ~X a.

Proposition 1 Let k 2 ½0; 1� and p 2 ð0; 1�. For weighted

average value-at-risks and coherent risk measures, the

following equations hold:

Ekð gAVaRm
pð ~XÞÞ ¼AVaRm

pðEkð ~XÞÞ; ð24Þ

E1�kð~qð ~XÞÞ ¼qðEkð ~XÞÞ ð25Þ

for fuzzy random variables ~X 2 ~X a.

Proof Let k 2 ½0; 1� and p 2 ð0; 1�. From (23), for ~X 2 ~X a

there exist a random variable X 2 X and a fuzzy number

~n 2 N such that ~XðxÞðxÞ ¼ 1fXðxÞgðxÞ þ ~nðxÞ for x 2 X
and x 2 R. Then, its a-cuts are
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~Xa ¼ ½ ~X�
a ;

~X
þ
a � ¼ ½X þ ~n�

a ;X þ ~nþ
a � ð26Þ

for a 2 ½0; 1�. Together with from (18), (21) and Lem-

ma 2(iii), we get

Ekð gAVaRm
pð ~XÞÞÞ

¼
R 1

0
ðk � AVaRm

pð ~X
�
a Þ þ ð1 � kÞ � AVaRm

pð ~X
þ
a ÞÞwðaÞ da

R 1

0
wðaÞ da

¼
R 1

0
ðk � AVaRm

pðX þ ~n�
a Þ þ ð1 � kÞ � AVaRm

pðX þ ~nþ
a ÞÞwðaÞ da

R 1

0
wðaÞ da

¼
R 1

0
ðk � ðAVaRm

pðXÞ þ ~n�a Þ þ ð1 � kÞ � ðAVaRm
pðXÞ þ ~nþa ÞÞwðaÞ da

R 1

0
wðaÞ da

¼ AVaRm
pðXÞ þ

R 1

0
ðk � ~n�

a þ ð1 � kÞ � ~nþa ÞwðaÞ da
R 1

0
wðaÞ da

¼ AVaRm
pðXÞ þ ~E

kð~nÞ
¼ AVaRm

pðX þ Ekð~nÞÞ
¼ AVaRm

pðEkð ~XÞÞ:

Thus, (24) holds. We can check (25) similarly. Therefore,

this lemma holds. h

In Proposition 1, we note AVaRm
pðEkð�ÞÞ is non-de-

creasing and qðEkð�ÞÞ is non-increasing. Let k 2 ½0; 1�.
Finally, from [32], we define a covariance by

CovðEkð ~XÞ;Ekð ~YÞÞ ¼ E ðEkð ~XÞ � EðEkð ~XÞÞÞ
�

ðEkð ~YÞ � EðEkð ~YÞÞÞ
� ð27Þ

for fuzzy random variables ~X; ~Y 2 ~X . We have the fol-

lowing lemma from [32, Theorems 4 and 5] .

Lemma 8 Let k 2 ½0; 1�. For fuzzy numbers ~n; ~m 2 N ,

fuzzy random variables ~X; ~Y 2 ~X and c 2 Rþ, the follow-

ing (i)–(iii) hold:

(i) CovðEkðc ~XÞ;Ekðc ~YÞÞ ¼ c2CovðEkð ~XÞ;Ekð ~YÞÞ.
(ii) CovðEkð ~XÞ;Ekð~nÞÞ ¼ CovðEkð~nÞ;Ekð ~XÞÞ ¼ 0.

(iii)

CovðEkð ~X þ ~nÞ;Ekð ~Y þ ~mÞÞ ¼ CovðEkð ~XÞ;Ekð ~YÞÞ.

6 Portfolio optimization with fuzzy random
variables

Let a probability p 2 ð0; 1� and k 2 ½0; 1�. Let m be the risk

spectrum in Lemma 3. Let q be the coherent risk measure

given by q ¼ �AVaRm
p, where AVaRm

p is the weighted

average value-at-risk (3). Let an expiration date T be a

positive integer. In this paper, we deal with a portfolio

model regarding n stocks as risky assets, where n is a

positive integer. For i ¼ 1; 2; . . .; n; fSi
tg

T
t¼0 denotes an s-

tock price process where the initial stock price Si
0 is a

positive number. Let Ri
t be the rate of return at time t,

which satisfies 1 þ Ri
t � 0 and

Si
t ¼ Si

t�1ð1 þ Ri
tÞ ð28Þ

for t ¼ 1; 2; . . .; T . In this paper, we discuss a case where

the rates of return have fuzziness, i.e., they are given by a

sequence of fuzzy random variables f ~R
i

tg
T
t¼1 � ~Xa. Hence,

we assume

1 þ ~R
i

t 	 0 ð29Þ

for all t ¼ 1; 2; . . .; T and i ¼ 1; 2; . . .; n. Define a set of

vectors W t ¼ ðw1
t ;w2

t ; . . .;wn
t Þ 2 Rn j

� Pn
i¼1 wi

t ¼
1 and wi

t � 0 for i ¼ 1; 2; . . .; n g: As trading strategies,

we use portfolio weight vectors ðw1
t ;w2

t ; . . .;wn
t Þ 2 W t. The

rate of return with a portfolio weight vector

ðw1
t ;w2

t ; . . .;wn
t Þ 2 W t is given by

~Rt ¼
X

n

i¼1

wi
t
~R

i

t: ð30Þ

Let t ¼ 1; 2; . . .; T and k 2 ½0; 1�. Let the mean and the

covariance of the rates of return ~R
i

t, respectively, be

li
t ¼EðEkð ~Ri

tÞÞ; ð31Þ

rij
t ¼CovðEkð ~Ri

tÞ;Ekð ~R j

t ÞÞ ¼ EððEkð ~Ri

tÞ � li
tÞðEkð ~R j

t Þ � l j
t ÞÞ

ð32Þ

for i; j ¼ 1; 2; . . .; n. Let a vector of rates of return, a

variance–covariance matrix and real numbers as follows:

lt ¼

l1
t

l2
t

..

.

ln
t

2

6

6

6

6

4

3

7

7

7

7

5

;Rt ¼

r11
t r12

t � � � r1n
t

r21
t r22

t � � � r2n
t

..

. ..
. . .

. ..
.

rn1
t rn2

t � � � rnn
t

2

6

6

6

6

4

3

7

7

7

7

5

; 1 ¼

1

1

..

.

1

2

6

6

6

6

4

3

7

7

7

7

5

;

ð33Þ

At ¼ 1TR�1
t 1;Bt ¼ 1TR�1

t lt;Ct ¼ lT

tR
�1
t lt and Dt ¼

AtCt � B2
t ; where T denotes the transpose of a vector. We

assume the determinant of the variance–covariance matrix

Rt is not zero, then there exists its inverse positive definite

matrix R�1
t , and we have At [ 0 and Dt [ 0. These

assumptions are natural, and they can be realized easily by

taking care of the combinations of stocks. From Lemmas 6,

7 and 8, for a portfolio wt ¼ ðw1
t ;w2

t ; . . .;wn
t Þ 2 W t, the

expectation and the variance regarding ~Rt ¼
Pn

i¼1 wi
t
~R

i

t are

calculated as follows:

EðEkð ~RtÞÞ ¼
X

n

i¼1

wi
tEðEkð ~Ri

tÞÞ ¼
X

n

i¼1

wi
tl

i
t; ð34Þ
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VðEkð ~RtÞÞ ¼
X

n

i¼1

X

n

j¼1

wi
tw

j
t CovðEkð ~Ri

tÞ;Ekð ~R j

t ÞÞ

¼
X

n

i¼1

X

n

j¼1

wi
tw

j
t r

ij
t :

ð35Þ

From (8), (34) and (35), we have value-at-risk

VaRpðEkð ~RtÞÞ ¼
X

n

i¼1

wi
tl

i
t þ jðpÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n

i¼1

X

n

j¼1

wi
tw

j
t r

ij
t

v

u

u

t :

ð36Þ

From (3), (36) and Proposition 1, the value-at-risk

Ekð gAVaRm
pð ~RtÞÞ has the following representation:

Ekð gAVaRm
pð ~RtÞÞ ¼

X

n

i¼1

wi
tl

i
t þ jmðpÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n

i¼1

X

n

j¼1

wi
tw

j
t r

ij
t

v

u

u

t

ð37Þ

with constant

jmðpÞ ¼
R p

0
jðqÞmðqÞ dq
R p

0
mðqÞ dq

; ð38Þ

where jð�Þ is given in (8). One of the sufficient conditions

for (8) and (36) is what the rates of return Ri
t

(i ¼ 1; 2; . . .; n) have normal distributions. From Lemma 1

and Proposition 1, the mean of a risk measure ~qð ~RtÞ ¼
� gAVaRm

pð ~RtÞ can be evaluated as

E1�kð~qð ~RtÞÞ ¼ �Ekð gAVaRm
pð ~RtÞÞ

¼ �
X

n

i¼1

wi
tl

i
t � jmðpÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n

i¼1

X

n

j¼1

wi
tw

j
t r

ij
t

v

u

u

t :

ð39Þ

By mathematical programming, this paper discusses a

portfolio problem to minimize the risk values (39) in three

steps. Let a constant c 2 R. First, we deal with the fol-

lowing classical problem.

Problem 1 Minimize the variance

VðEkð ~RtÞÞ ¼
X

n

i¼1

X

n

j¼1

wi
tw

j
t r

ij
t ð40Þ

with respect to portfolios wt ¼ ðw1
t ;w2

t ; . . .;w
n
t Þ 2 W tðcÞ,

where W tðcÞ ¼ fðw1
t ;w2

t ; . . .;wn
t Þ 2 W t j

Pn
i¼1 wi

tl
i
t ¼ cg:

From the classical results in quadratic programming, we

obtain the following lemma [35, 36].

Lemma 9 The optimal portfolio in Problem 1 is given by

w�
t ¼ n�R�1

t 1þ g�R�1
t lt ð41Þ

and then the corresponding variance is

min
wt2W tðcÞ

VðEkð ~RtÞÞ ¼
Atc2 � 2Btcþ Ct

Dt
; ð42Þ

where

n� ¼ Ct � Btc
Dt

and g� ¼ Atc� Bt

Dt
: ð43Þ

The solution w in Lemma 9 is called a minimal risk

portfolio [21, 24]. Next for a constant c we discuss the

following risk minimization portfolio problem.

Problem 2 Minimize the risk values of the rate of return

E1�kð~qð ~RtÞÞ ¼ �
X

n

i¼1

wi
tl

i
t � jmðpÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n

i¼1

X

n

j¼1

wi
tw

j
t r

ij
t

v

u

u

t

ð44Þ

with respect to portfolios wt ¼ ðw1
t ;w2

t ; . . .;wn
t Þ 2 W tðcÞ.

Then, the following result is trivial from Lemma 9.

Lemma 10 Let jmðpÞ satisfy jmðpÞ\�
ffiffiffiffiffiffiffiffiffiffiffiffi

Dt=At

p

. Then, the

optimal risk value in Problem 2 is

inf
wt2W tðcÞ

E1�kð~qð ~RtÞÞ ¼ �c� jmðpÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Atc2 � 2Btcþ Ct

Dt

s

:

ð45Þ

Hence, the function (45) has the following properties

from [36, Theorem 4.1]

Lemma 11 Let jmðpÞ satisfy jmðpÞ\�
ffiffiffiffiffiffiffiffiffiffiffiffi

Dt=At

p

. Then, a

real-valued function

cð2 RÞ7! � c� jmðpÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Atc2 � 2Btcþ Ct

Dt

s

ð46Þ

is convex and it has the minimum

�Bt

At
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

AtjmðpÞ2 � Dt

q

At

ð47Þ

at

c�t ¼ Bt

At
þ D

At

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

AtjmðpÞ2 � Dt

q : ð48Þ

Finally, we discuss the following minimization problem

of E1�kð~qð ~RtÞÞ.
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Problem 3 Minimize the risk values

E1�kð~qð ~RtÞÞ ¼ �
X

n

i¼1

wi
tl

i
t � jmðpÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

X

n

i¼1

X

n

j¼1

wi
tw

j
t r

ij
t

v

u

u

t

ð49Þ

with respect to portfolios wt ¼ ðw1
t ;w2

t ; . . .;wn
t Þ 2 W t.

Because

inf
wt2W t

E1�kð~qð ~RtÞÞ ¼ inf
c

inf
wt2W tðcÞ

E1�kð~qð ~RtÞÞ
� �

; ð50Þ

from Lemmas 9 and 11 we arrive at the following analyt-

ical solutions for Problem 3 in a similar way to [35].

Theorem 1 Let jmðpÞ satisfy jmðpÞ\�
ffiffiffiffiffiffiffiffiffiffiffiffi

Dt=At

p

.

(i) The minimum risk value in Problem 3 is

q�t ¼ inf
wt2W t

E1�kð~qð ~RtÞÞ ¼ �Bt

At
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

AtjmðpÞ2 � Dt

q

At
;

ð51Þ

and then the corresponding expected rate of

return is

c�t ¼ Bt

At
þ Dt

At

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

AtjmðpÞ2 � Dt

q : ð52Þ

(ii) The optimal portfolio of Problem 3 is given by

w�
t ¼ n�t R

�1
t 1þ g�t R

�1
t lt; ð53Þ

where

n�t ¼ Ct � Btc�t
Dt

and g�t ¼ Atc�t � Bt

Dt
: ð54Þ

(iii) The portfolio (53) satisfies w�
t � 0 if R�1

t 1� 0 and

R�1
t lt � 0 for t ¼ 1; 2; . . .; T , where 0 denotes the

zero vector.

7 Numerical examples

In this section, we give a few examples to understand the

results in the previous sections. Yoshida [39] has studied

the relations between various utility functions and their risk

premia. In Examples 1 and 2, we discuss risk neutral utility

functions and the risk averse utility function in Sect. 3, and

we compare the results.

Example 1 Let a domain I ¼ R and let f be a risk neutral

utility function

f ðxÞ ¼ ax þ b ð55Þ

for x 2 R with constants að[ 0Þ and bð2 RÞ. From [39,

Example 1], its risk spectrum in Lemma 3 is given by

mðpÞ ¼ 1, and then the corresponding coherent risk measure

is the average value-at-risk (2). Therefore, we have

Ekð gAVaRm
pð ~XÞÞ ¼ AVaRpðEkð ~XÞÞ ¼ 1

p

Z p

0

VaRqðEkð ~XÞÞ dq

ð56Þ

for ~X 2 ~X and p 2 ð0; 1�. We can find this portfolio opti-

mization in Yoshida [38, Sect. 6(i)].

Example 2 Let a domain I ¼ R and let a risk averse

exponential utility function

f ðxÞ ¼ 1 � e�sx

s
ð57Þ

for x 2 R with a constant sð[ 0Þ. Let X be a family of

random variables X which have normal distribution func-

tions. Define the cumulative distribution function U : R !
ð0; 1Þ of the standard normal distribution by

UðxÞ ¼ 1
ffiffiffiffiffiffi

2p
p

Z x

�1
e�

z2

2 dz ð58Þ

for x 2 R, and define an increasing function j : ð0; 1Þ7!R

by its inverse function

jðpÞ ¼ U�1ðpÞ ð59Þ

for probabilities p 2 ð0; 1Þ. Then, the value-at-risk satisfies

(8) with a mean l ¼ EðXÞ and a standard deviation

r ¼ rðXÞ. Suppose there exists a distribution function w :

R
 ð0;1Þ7!½0;1Þ such that

wðl; rÞ ¼ /ðlÞ � 21�n=2

Cðn=2Þ r
n�1e�

r2

2 ð60Þ

for ðl; rÞ 2 R
 ½0;1Þ, where /ðlÞ is some probability

distribution, Cð�Þ is a gamma function and 21�n=2

Cðn=2Þ r
n�1e�

r2

2 is

a chi distribution with degree of freedom n. From [39,

Example 2], the component function (10) for the risk

spectrum m in Lemma 3 is reduced to

CðpÞ ¼ 1

p
�

Z 1

0

1 � 1
1
p

R p
0

esrðjðpÞ�jðqÞÞ dq

 !

rne�
r2

2 dr

Z 1

0

log 1
p

R p
0

esrðjðpÞ�jðqÞÞ dq
� �

rne�
r2

2 dr
:

ð61Þ

Figures 1 and 2 illustrate utility functions f(x) and the

corresponding risk spectra mðpÞ. We give the rates of return

~R
i

t 2 ~X a by the following fuzzy random variables

~R
i

tðxÞð�Þ ¼ 1fRi
tðxÞgð�Þ þ ~ai

tð�Þ ð62Þ
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for x 2 X, where Ri
t has a normal distribution with the

mean value EðRi
tÞ and ~ai

t is a triangle-type fuzzy number

~ai
tðxÞ ¼ maxf1 � jxj=ci

t; 0g ð63Þ

for x 2 R with a positive number ci
t. Here, we give a simple

example to illustrate our idea. Let n ¼ 4 be the number of

assets. Take the expected rate of return and a variance–co-

variance matrix as Table 1. We deal with a case of the pes-

simistic index (k ¼ 1) and the necessity evaluation weight

(wðaÞ ¼ 1 � a). For example, in a case of risk probability 5%,

i.e., p ¼ 0:05, in the normal distribution and utility function

f ðxÞ ¼ 1 � e�x with s ¼ 1 in (57), we can easily calculate

At ¼ 13:5861[ 0;Dt ¼ 0:0112653[ 0 and jmðpÞ\�
ffiffiffiffiffiffiffiffiffiffiffiffi

Dt=At

p

¼ �0:0287955 for all p 2 ð0; 1�. From Theorem 1,

we easily obtain the optimal portfolio w�
t ¼

ðw1
t ;w2

t ;w3
t ;w4

t Þ ¼ ð0:247093;

0:281828; 0:304902; 0:166177Þ for Problem 3, and then the

expected rate of return is c�t ¼ 0:0713242 and the minimum

risk value is q�t ¼ infwt2W t
E1�kð~qð ~RtÞÞ ¼ � supwt2W t

Ek

ð gAVaRm
pð ~RtÞÞ ¼ 0:551907:

For p ¼ 0:01, Table 2 shows the expected rates of return

c�t and the minimum risk values q�t in case of pessimistic

index k ¼ 1 and necessity evaluation wðaÞ ¼ 1 � a and in

case of optimistic index k ¼ 0 and possibility evaluation

wðaÞ ¼ 1. Then, we can observe 0:071308� c�t � 0:082974

and 0:678478� q�t � 0:666811 in Example 2 (s ¼ 1), and

this range is depending on decision maker’s selection of

pessimistic–optimistic index k and possibility–necessity

weight wðaÞ, which are decided by his certainty about

information in the stock market.

It is well known that the degree of decision maker’s risk

averse attitude is represented by Arrow’s absolute risk

averse indexes �f 00=f 0, which is calculated as �f 00=f 0 ¼ 0 in

Example 1 with risk neutral utilities and which follows

�f 00=f 0 ¼ sð[ 0Þ in Example 2 with risk averse utilities [3].

Table 3 implies the comparison of the expected rates of

return c�t and the minimum risk values q�t for utility functions

f(x) and their risk averse indexes �f 00=f 0. In Table 3, the

minimum risk value q�t becomes larger and the expected rate

of return c�t is increasing a little when the risk averse index is

larger. These data reflect the risk aversity of the utility

functions because weighted average value-at-risks AVaRm
p

with risk spectrum m are taking over the decision maker’s risk

averse behavior. Figures 3 and 4 illustrate the risk values q�t
and the expected rates of return c�t for Examples 1 and 2

(s ¼ 1; 2). In Fig. 3, we can observe the expected rate of

return c�t of Example 1 increases rapidly to infinity when

p approaches to 1; however, c�t of Example 2 (s ¼ 1; 2)

remain stable. The reason comes from that the minimum risk

value of Example 1 gets close and crosses the line q�t ¼ 0,

which implies the no risk line (Fig. 4). These drastic changes

of graphs c�t and q�t in Example 1 look abnormal. Thus,

coherent risk measure given by average value-at-risk

q ¼ �AVaRp, which corresponds to risk neutral utility

function in Example 1, gives us reasonable results only if

probability p is small. On the other hand, the coherent risk

measures q ¼ �AVaRm
p derived from risk averse utility

functions in Example 2 bring us stable and reasonable results

for any positive probability p in portfolio optimization.
Fig. 1 Utility functions f(x)

Fig. 2 Risk spectra mðpÞ

Table 1 Rate of return lt with fuzzy factor and variance–covariance

matrix Rt

li
t EðRi

tÞ ci
t

i ¼ 1 0.09 0.010

i ¼ 2 0.07 0.009

i ¼ 3 0.08 0.008

i ¼ 4 0.07 0.007

rij
t

j ¼ 1 j ¼ 2 j ¼ 3 j ¼ 4

i ¼ 1 0.38 - 0.06 - 0.05 0.08

i ¼ 2 - 0.06 0.34 - 0.06 0.06

i ¼ 3 - 0.05 - 0.06 0.36 - 0.04

i ¼ 4 0.08 0.06 - 0.04 0.29
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8 Concluding remarks

In Sect. 7, we have estimated fuzzy random variables not

only by pessimistic index k ¼ 1 and necessity evaluation

wðaÞ ¼ 1 � a but also by optimistic index k ¼ 0 and pos-

sibility evaluation wðaÞ ¼ 1 (Table 2). The parameters

should be chosen based on decision maker’s philosophy in

investigation and his observation of the stock market.

Decision maker’s utility function (57) is characterized

by the parameter s, which coincides its risk averse index

�f 00=f 0, i.e., the degree of his risk averse attitude (Table 3).

The parameter s should be revised by repetition of trial and

error as an important factor representing his decision

making attitude. In such a way, the decision maker can use

a risk criterion based on his utility f quickly and he can

make asset management stable.

Using the risk spectrum m in Lemma 3, we can incor-

porate the decision maker’s risk averse attitude f into

coherent risk measures. As we have seen in Figs. 3 and 4,

the coherent risk measures with the risk spectrum m bring

us reasonable estimation in portfolio optimization not only

for small probabilities p but also large probabilities p. This

approach will be applicable to subjective risk measurement

for both investment and speculation in finance and man-

agement. In the next topic, we will need to investigate

dynamic portfolio optimization models using the coherent

risk measures with the risk spectrum m.
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